What is BIM?
Building Information Modelling (BIM) is the linking of people, technology and processes to improve outcomes in building and construction.
It is the latest evolution of the building industry and it refers to the process of designing, building and operating a building collaboratively using a single coherent system of 3D models rather than separate design drawings. BIM incorporates people and technology to streamline time and cost, and improve efficiency in builds including skyscrapers, hospitals, office and residential buildings.
BIM isn’t just a set of software or simply a 3D model. It contains not only the model elements but the vast amounts of information that make up the project, as well as the process of exchanging that information with other parties involved. Whereas previous workflows relied on multiple file formats and disconnected processes that quickly became out of sync when changes were made, BIM workflows allow for a much more dynamic and synchronised approach to project management.
In summary, BIM is the gathering of the following three components:
- Agile development
- Lean construction for the building industry
- Complete digitalisation of building design processes
Why use BIM?
BIM is used to improve the efficiency of the construction process, reduce waste during the construction and to improve the quality and the efficiency of the buildings.
Many advanced industries have championed the concept of “Failing Fast.” That is, experimenting and trying new things – even if the first time around means failure – leading to another iteration and eventual success. In the high-stakes world of building and construction, this concept only works in the digital realm. Planning a build before any machinery hits the ground is the only way to “Fail Fast.” It’s not possible to experiment with bricks and mortar, and still survive in an environment typified by time and financial pressure, rapid deadlines, large and distributed working teams, and huge fiscal borrowing.
With traditional methods of construction, where teams move from one phase to another in the project, some information is lost from the previous phase. With BIM, information is collected digitally to be available when it is needed, wherever it is needed, by whomever it is needed. Adopting BIM means establishing a continuous flow of information. Every phase of the building process – from early planning and design, to construction, operation, maintenance and final recycling – is captured, digitally. This opens new possibilities for better efficiency, accuracy, collaboration and cooperation between the parties involved in the built. We live in an age of great automation. Every business process is digitalised, and every decision is driven by data. The World Economic Forum has pronounced this a “Fourth Industrial Revolution,” where connected machines, feeding from data, will exponentially transform processes in every industry.
Why is BIM important?
As the red line in the graph demonstrates, by dynamically connecting design, analysis, and documentation in a BIM workflow, most of the effort in a design project is shifted back into the detailed design phase, when the ability to impact project performance is high and the cost of making design changes is low. This allows engineers to spend more time evaluating what-if scenarios to optimise the design, and less time generating construction documentation.
Why should I adopt BIM?
- Via a rapid exchange of design information, different scenarios can be explored faster, allowing for more iterations of the architecture, structure and engineering systems and resulting in an accurate and optimised building design.
- All drawings can be captured into one comprehensive 3D model, avoiding information loss and enabling more educated decisions based on data.
- Necessary engineering calculations for ventilation, heating and piping systems can be performed quickly and easily.
- All geometric and spatial data required to perform energy calculations can be produced directly from the model.
- Ensuring compliance with environmental requirements is easier and the increased efficiency helps reduce building lifecycle costs.
- Integration of cost and scheduling data enables online cost estimation and visualisation of the construction progression.
- Accurate Bills of Quantities can be produced directly from the model.
- Data required to control procurement can be linked directly from the model, optimising the procurement process.
- Detailed model contains all data and geometry required for accurate installation of MEP systems.
- Once the building is completed, the next version of the model will inform facilities management decision-making and systems, allowing for preventative maintenance and repair.
The innovative use of BIM technologies across the board, as well as the cooperation and information sharing tools that were employed by all project parties, enabled us to optimize design management leading to an increase in productivity and design quality. It should be emphasized that all this was possible only because of the work done in structuring the entire information process before the actual design work was started.
Luca Serri, Founding Partner and Chief Executive of ATIproject explaining the benefits of BIM for the design and construction of the new Odense University Hospital in Denmark
Read the case study ›
What are the benefits of BIM?
- Modernises the bidding process basing it on accurate take-offs of the building materials
- With a BIM model that includes comprehensive 3D modelling of all structures and MEP systems, building owners are able to evaluate bids fairly with a quantity survey, costed line by line. The total bid price will therefore reflect the actual costs of the building materials rather than estimates.
- Can significantly lower carbon emissions during construction
- Building owners today prioritise sustainability. A quantity take-off based on a 3D BIM model, instead of 2D drawings, provides far more accurate results. This empowers architects and contractors to better define the exact quantities of building materials required. When this estimation is accurate, the pre-bid budget will be closer to the end budget and a dramatic reduction in material waste can be achieved. An accurate take-off directly impacts the energy, resources, and travel time required to obtain building materials, resulting in significantly lowered carbon emissions.
- Optimising MEP systems in the design phase lowers electricity and water consumption during operations
- When taken as a whole, a building consists mostly of manufactured products. When the product manufacturers’ specifications are rolled into the BIM ecosystem early in the design phase, the MEP systems can be tested and designs can be revised easily. The improved system efficiency will benefit stakeholders long after construction has been finished.
- Improves the experience of the occupants in the building
- An accurate BIM model of a building makes it easier to obtain critical stakeholder feedback through informative previews and virtual walk-throughs. Including the perspective of the occupant community during the design phase helps produce more successful buildings.
- Facilitates communication during construction
- Communication is both a critical aspect in the success of a construction project and a constant challenge. With BIM, all changes such as timings, schedules, availability of materials and the right specialist teams can be coordinated through digital applications and mobile devices in real-time, keeping all stakeholders informed. Data loss can also be avoided when all parties work with the same easily accessible and up-to-date digital BIM model. In addition, technologies such as BIM and AR can lead to proactive approaches that help control the construction process and limit potential mistakes.
- Cost control
- In software engineering, prototype solutions are quickly built, and quickly tested, to uproot failures as fast as possible. In the bricks-and-mortar world of construction, building owners need to ensure the initial version is as good as possible in its design, as a second version of a building is not possible without costly renovations. BIM can help avoid the “fix it in the field” approach that easily forces costs to spiral out of control. BIM enables the first version of a building to be analysed, tested, and analysed again. The design can be iterated and evolved many times over. Through this process, each iteration is better than the last and it will result in a vastly improved building once the foundations are dug.
- Enables predictive maintenance
- BIM helps building owners achieve a level of predictive maintenance, meaning that unplanned outages can be reduced, while maintenance cycles can be carefully planned. This provides greater precision in facility management budgeting. The facility management team will not be caught out with unexpected equipment changes – all of these data points can be predicted by the BIM model. Analysis of the BIM data across a portfolio of buildings also enables an owner to determine maintenance cycles on major and minor building systems and to compare buildings and spaces within their portfolio.
- Lowers the life-time costs of a building
- The use of the BIM model in facility management is gaining more attention as building owners realise that it can reduce cost over time. If the iceberg hypothesis is to be believed (that only 1% of a building’s lifetime cost is spent on design while 70% is spent on maintaining the building), the promise of BIM is that by shifting some capital expenditure to design, and increasing that 1% by a small amount, owners can reduce the 70% of costs that is used on maintenance.
- Enables building management systems and facility management systems
- The widespread use of sensors in buildings has paved the way for intelligent buildings. Intelligent buildings will know not only how the building is used, but also if something goes wrong in it. For example, if there is a leakage in the pipe system, moisture in the structure can be noticed before it causes any mould and subsequent health problems. This detailed building information can be connected directly to building management systems. From the building owner’s perspective, the BIM model will contain rich information about the building’s assets. An owner can click into an aspect of the HVAC system to see an installation date, who installed it, what maintenance was undertaken, and warranty information. The ability to have so much data about a building’s components drives a better relationship between the owner and any contractors, maintenance companies and other partners.
What are the benefits of BIM for MEP design?
Global trends are making MEP projects more complex while BIM is helping industry professionals work more efficiently and effectively.
- All the elements of an MEP design can be determined more accurately and cost simulations are more realistic.
- With rapid modelling, MEP systems are optimised in the design phase before they are installed in the building.
- The BIM model can be used to gain faster buy-ins with faster and better visualisations.
- The BIM model can be used to convey design content to the field.
- Enables retaining model intelligence from concept to construction and during the whole building lifecycle.
- Offers better material estimates for the construction phase.
- Enables predictive maintenance and MEP asset tracking during operations.
- Reduces project risks overall through tested, accurate and optimised MEP system designs.
- Contributes to improved timelines and cost savings during construction through a reduction of installation mistakes and material waste.
- Results in better quality and more efficient buildings with a smaller environmental footprint.
What is a BIM object?
A BIM object is an accurate digital representation of the physical product, modelled in 3D.
In addition to geometrical information, they also include comprehensive technical characteristics of the real product. BIM objects are used to populate the BIM model.
In MEP design, for example, all engineering systems are modelled using BIM objects as components. When the BIM objects include technical information that can be used by calculation software, it is possible to optimize these systems in the design phase and to the efficiency of different MEP systems within a BIM model.
What is BIM 360?
BIM 360 is a cloud based collaboration and management platform that supports construction workflows from the design phase to operations.
As described by its developer Autodesk, BIM 360 is a unified platform connecting different project teams and data in real-time, from design through construction, supporting informed decision-making and leading to more predictable and profitable outcomes.
The latest version of MagiCAD is fully compatible with Autodesk BIM 360 Design enabling MagiCAD datasets to automatically synchronize into a Revit project using Revit standard functionality.
9 new and upcoming construction industry trends resulting from BIM adoption
- Digital Twins
- Digital twins are slowly making their way into construction. A digital twin is a virtual model of a building that collects real-world information about the structure via sensors, drones and other wireless technology. The “twin” continuously learns from multiple sources, including advanced analytics, machine-learning algorithms and artificial intelligence (AI) to gain valuable insights about the performance, operation or profitability of a project, whether built or in progress (source). In the future, graphical BIM models will feed the Facilities Management environment, including sources like energy usage data, service requests, and preventative maintenance. The future potential involves linking BIM to FM on a city-wide basis, not just building-wide.
- Artificial Intelligence
- A vast amount of information is collected by the BIM model during the design and construction of a building. Interpreting and learning from the data collected from BIM models and past projects helps to avoid future errors and improve the design and construction process. However, this information is more than can be processed by people. AI-assisted BIM is a trend that makes use of this vast information in order to speed up the time it takes to process the data and make the building process a lot more effective. By using AI, BIM software can learn from data and identify patterns. They can then make independent decisions on how to automate and improve the building processes.
- Digital models as legal document
- BIM models may soon be assigned the same official status as PDFs have been for 2D documentation. Recognising and standardizing BIM models as legally binding construction documents in the same way as paper plans have been in the past will move BIM closer to a common practice in construction projects.
- Easy-access to BIM models in Cloud services
- Cloud services simplify construction projects. Instead of everyone involved in a project sending updated models to one another once a week, only for one party to discover that the wall they have been working on seems to have been moved, everyone can now work in the same model in real time. Everyone has access to the latest information and can be certain that it is correct, allowing the work to be completed more quickly.
- Robots make their way to the construction site
- In the near future, it will be more common to see robots out on building sites using BIM models to carry on construction tasks on-site. At the moment, only a small number of all industrial robots make it to the construction sector, and most of those are used in prefab production. However, several companies are currently working on the development of mobile robots for the construction industry.
- 3D printing for building construction
- All over the world, people are trying to make buildings using 3D printers. Researchers in California have succeeded in printing and building a house in just 24 hours using this technology. In China, such experiments have been taken one step further, using a 3D printer to produce as many as ten houses in one day in the factory. The building material consists of recycled construction material, material left over from the industry, and cement. Such tests are also being carried out in Europe. The benefits associated with 3D printing include reduced material waste and increased recycling. The technique also offers space for greater architectural freedom, as 3D printers can handle curved shapes that are harder to make by hand.
- Prefabrication
- Prefabrication and modular construction is a renewed trend thanks to advances in BIM. Accurate and detailed design of building components means that an increasing number of components can be manufactured off-site. Modular and prefabricated construction can reduce the time of the construction project and increase its efficiency because the prefabricated components can be built in optimal factory conditions and construction companies do not have to deal with limiting factors on-site such as weather or daylight.
- Sustainable construction
- One trend that is clear for everyone is the way that development is moving more and more towards energy-efficient, sustainable buildings. On 1 January 2021, the new, more stringent European Energy Performance of Buildings Directive will come into effect. All buildings constructed after this date will need to be highly energy-efficient. There are a number of sustainable construction certifications with different areas of focus, such as LEED, BREEAM and GreenBuilding and digitalisation can help to make sustainable construction easier. Environmental calculation tools can produce building lifecycle analyses, calculate the environmental impact of different buildings and help determine how companies can reduce emissions by revising their material choices or production methods.
- VR/AR/MR
- The use of Virtual Reality (VR) in construction projects is becoming increasingly common. For example, you can now take a VR stroll around the virtual building and see how it will look once the construction is complete. VR helps to provide a better understanding of the project for everyone involved: builders, decision-makers and residents alike. This technology is going to see heavy expansion, and the function will be built into mobile phones. Instead of putting on a pair of big VR glasses, all you’ll need to do is hold up your phone.
- Augmented Reality (AR) means adding digital information to the real world around. The uses of AR in construction are numerous. For example, AR technology can be used to illustrate installations in existing buildings, such as how a pipe runs through a roof or a wall.
- Mixed Reality (MR) is a combination of VR and AR. This means that the virtual object in question is anchored so well in reality that it seems to be part of the real world – just like a hologram. With this technology, a building owner can walk out onto their site, put on their glasses and see their as-yet-unbuilt building in full scale. You can see how it will look if you make a few tweaks or zoom in on the details. You can even go into the house and experience it before it is built, see the view from different windows, check how moving a wall will affect the feel of the room, or look at a cross-section of the wall. This technology will also be important for the installation industry.
Building Information Modelling (BIM) as a methodology has naturally a lot of different implications for the building industry, but ultimately I think it all comes down to each of the different project parties in a building project being able to access and use all the data they need in each stage of the project without unnecessary overlap and time spent on repetitious work. This of course requires efficient data transfer between the project partners in a format which each of them can access and use from stage to stage.
Jan Behrens, Head of Project Support at Lindab
Read full interview ›
Download our whitepapers to learn more about BIM
![]() Energy-Efficient Buildings for a Sustainable Future Download whitepaper › |
![]() Artificial Intelligence in MEP Design Download article › |
![]() Unlocking the benefits of digitalisation in construction Download whitepaper › |
![]() BIM Guidebook for MEP Designers Download guidebook › |
![]() BIM Adoption in Europe Download whitepaper › |
![]() Using BIM to lower the lifetime cost of a building Download whitepaper › |
![]() Using BIM to transform MEP design Download whitepaper › |
![]() Understanding BIM in the age of digitisation Download whitepaper › |
![]() 6 key trends in the construction industry Download whitepaper › |
Data Driven MEP Design – Digital Event
Watch the on demand presentations from the Leading Digital Engineering Online Event hosted by MagiCAD Group.
Find out about new concepts and solutions for staying ahead of the game in Mechanical, Electrical and Plumbing (MEP) design and learn how detailed design solves MEP designers’ everyday challenges.
Watch presentations ›